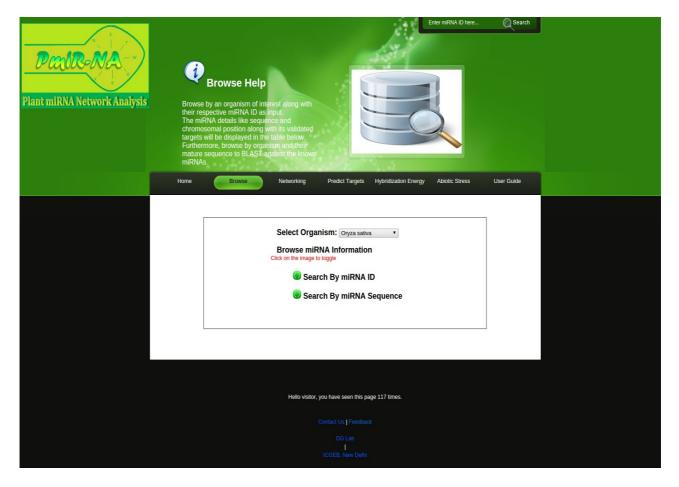
PmiR-NA User Guide

The PmiR-NA has many useful miRNA-target network analysis and functions that are demonstrated in this user guide. It is a web-based tool that aids analysis of miRNA targets and its interaction network. PmiR-NA is very easy to use, and provides an user-friendly interface.


1. Prerequisite

a. Web browser with Adobe Flashplayer Plugin.

b. Input miRNA and target query sequence/files.

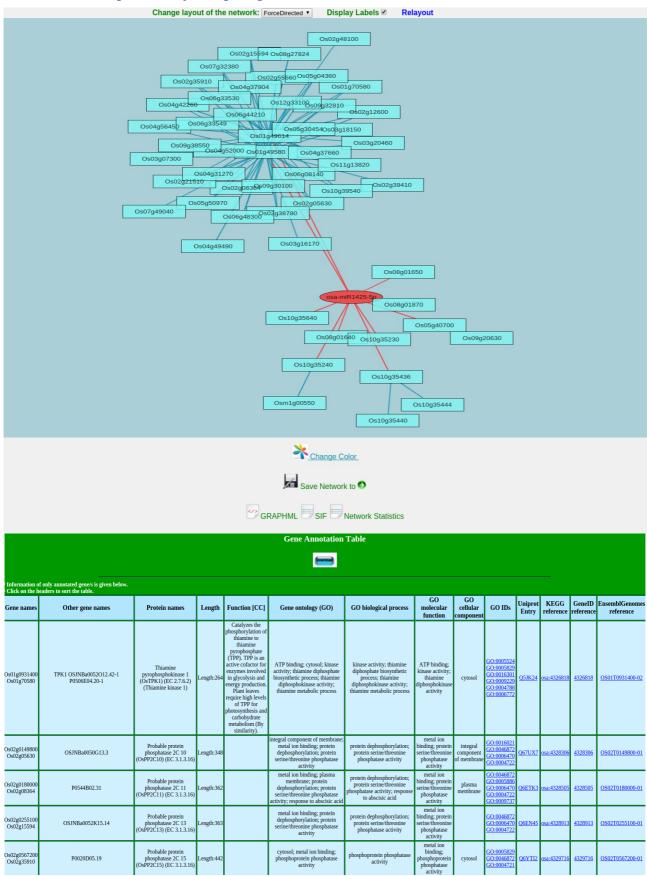
2. Browse

The Browse page mainly contains miRNAs information along with its experimentally validated targets, hybridization energy, abiotic stress details and its homologs. Here, the user need to first select the organism from the first dropdown menu. After organism selection, user can seen that there are two separate sections for the seach. In the first section, user can search by miRNA ID and in the second section user can search by miRNA sequence.

As the first toggle is clicked, user can see the dropdown menu having the list of validated miRNA IDs of the respective organism selected in the first dropdown menu. User need to select the miRNA ID to view the search results. As the miRNA ID is selected, it retrives information from the pmiR-NA database for a selected miRNA of the species of interest, and display the search results in a tabular form below the toggle option.

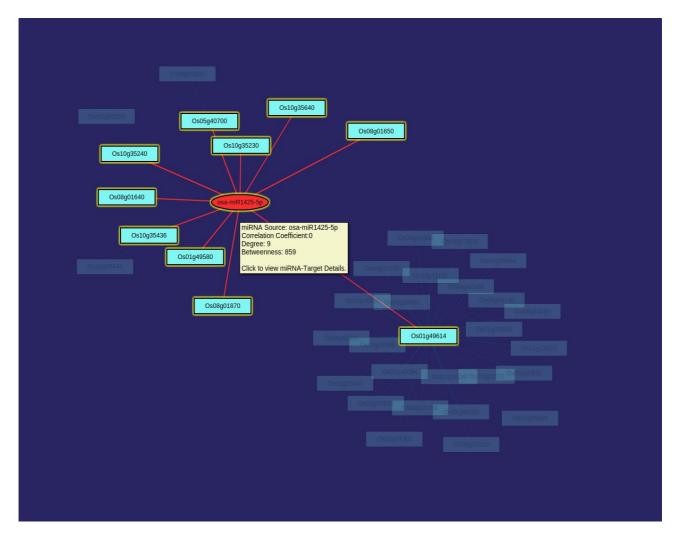
Browse miRNA In Click on the image to toggle Search By	
	miRNA Sequence
Organism	Oryza sativa
miRNA ID	osa-miR1320-5p
miRNA Sequence	UGGAACGGAGGAAUUUUAUAG Get Sequence
Chromosome	Chr6
miRNA Location	5073570 - 5073590
Strand	Negative Strand
miRNA Family	miRfam1320
Pre-miRNA ID	osa-MIR1320
Pre-miRNA Sequence	UUAGGCCUACUUUGGAACGGAGGAAUU UUAUAGGAUUUUUGCGGGAAUUUUAAC GAUUCCUGUAAAAUUCAUUCGUUCCAA GUAGCCCUAUUAG Get Sequence
Pre-miRNA Location	5073507 - 5073602
miRBase Accession Number	MI0009717
Validated Targets	Os05g47550
Predicted Targets by psRobot	OS07T0418150-01 OS05T0549000-01 OS06T0200250-01 OS09T0249100-01 OS09T0533650-01 OS12T0242800-01 OS12 more View Details
Predicted Targets by TargetFinder	OS06T0200250-01 OS05T0549000-01 OS01T0860400-01 OS09T0367900-01 OS07T0418150-01 OS10T0539700-01 OS02 more View Details
Hybridization Energy (mfe)	View Details
Abiotic Stress	View Details

In the second section, user again have to specify the organism from the first dropdown menu. After organism selection, a name to the search sequence is to be provided by the user in the first input textbox and then user need to paste the miRNA sequence in the second input textbox. As the submit botton is clicked, the sequence homologs for the input sequence in second textbox are shown on the new result page in a tabular form. The result can also be downloaded by "click here" option to view output file.

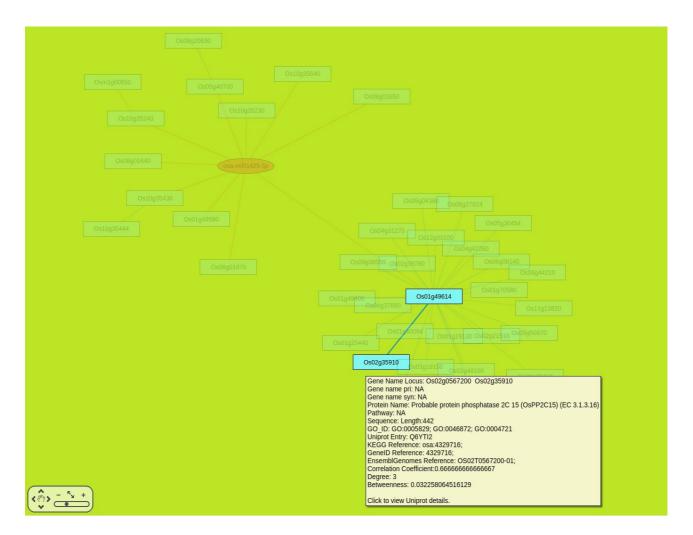

Organism Selected: Arabidopsis thaliana											
<u>Click here</u> to see the input file.											
Click here to see complete BLAST output											
neaders to sort the table.											
miRNA Query	Subject ID	Identity(%)	Alignment Length	Mismatches	Gan Openings	Ouery Start	Ouery End	Sequence Start	Sequence End	E-Value	Bit Score
UGACAGAAGAGAGUGAGCAC		100.00	20	0	0	1	20	1	20	4e-08	40.1
UGALAGAAGAGAGUGAGLAC											
UGACAGAAGAGAGUGAGCAC		100.00	20	0	0	1	20	1	20	4e-08	40.1
	ath-miR156c	100.00 100.00	20 20	0	0	1	20 20	1 1	20 20	4e-08 4e-08	40.1 40.1
UGACAGAAGAGAGUGAGCAC	ath-miR156c ath-miR156a					1 1 1		1 1 1			
UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC	ath-miR156c ath-miR156a ath-miR156d	100.00	20	0	0	1 1 1 1	20	1 1 1 1	20	4e-08	40.1
UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC	ath-miR156c ath-miR156a ath-miR156d ath-miR156f	100.00 100.00	20 20	0	0	1 1 1 1 1	20 20	1 1 1 1 1	20 20	4e-08 4e-08	40.1 40.1
UGACAGAAGAAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGAGUGAGCAC UGACAGAAGAGAGAGUGAGCAC	ath-miR156c ath-miR156a ath-miR156d ath-miR156f ath-miR156e	100.00 100.00 100.00	20 20 20	0 0 0	0 0 0	1 1 1 1 1 2	20 20 20	1 1 1 1 1 2	20 20 20	4e-08 4e-08 4e-08	40.1 40.1 40.1
UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC UGACAGAAGAGAGUGAGCAC	ath-miR156c ath-miR156a ath-miR156d ath-miR156f ath-miR156e ath-miR156g	100.00 100.00 100.00 100.00	20 20 20 20	0 0 0 0	0 0 0 0	1 1 1 1 1 2 1	20 20 20 20 20	1 1 1 1 2 1	20 20 20 20	4e-08 4e-08 4e-08 4e-08	40.1 40.1 40.1 40.1

3. Networking

The Networking page dynamically generate biological network of miRNA and their targets. To visualize the network user first need to select the organism from the dropdown menu. As the organism is selected, user must provide a name to the network in the first input textbox. After a name is given to the network that is going to be drawn, user needs to select the miRNA ID from the second dropdown menu which is the list of validated miRNA IDs of the selected organism from the first dropdown menu.



As the miRNA ID is submitted, a new result page is shown. The result page shows a adobe flashplayer plugin network frame and below the frame, a gene annotation table having list of targets and their interacting parters in the above network are shown. The network visualization is mainly done by using Cytoscape Web (<u>http://cytoscapeweb.cytoscape.org/</u>). The full Cytoscape tutorial can be found here: <u>http://www.cytoscape.org/documentation_users.html</u>



The network shows the single input, miRNA node in red color and its target nodes in sky-blue color. The edges from the miRNA which are connecting it to the first target are shown in red color. Further the targets connect to the interacting targets with an edges having blue color. The nodes in the network can be draged by the user anywhere inside the network frame. User can also maximize and minimize the network inside the frame by increasing or decreasing the size using the pan zoom control panel placed on the bottom left corner of the network frame.

Each node (miRNA, targets and its interacting parters) can select its first neighbors by the content menu option on right click, placed for each nodes. As the "Select first neighbors" option is clicked, the first neighbors of that node are highlighted. All the selected nodes in this case can also be moved within the network frame at the same time.

Another feature to be marked in the network drawn is to visualize the details about each node in the network frame itself. Here, user needs to move the cursor above a node to view the onmouse event feature which helps to shown the gene details along with the correlation coefficient, degree and betweenness of target nodes inside a yellow color box. As the cursor is on the node, not only the details of target node is shown in yellow box but the first neighbors of that particular nodes is also shown. Further if the user clicks on the target node, user will be linked to the webpage of UniprotKB showing the detailed information of the clicked target node. Similarly, if the user clicks on the miRNA node, one will be linked to a new webpage showing the details of miRNA-target hybridization energy (minimum free energy i.e mfe in kcal/mol) and secondary structure informations.

Further the network can also be customized by the user on changing the layout of the network using the dropdown menu placed at the top of the network frame. Force-directed layout is set as a default layout for the network but user can also change it to radial, circle or tree layouts. Beside the network layout dropdown menu, there are other customizable features for the user like "display labels" checkbox option to enable or disable the labels of the nodes to be viewed. User can also change the color of the network by "Change color" option placed below the network drawn. The user can download the network in output formats like SIF and GRAPHML formats. Further network statistics details can also be downloaded. In case the user customize the network using different features but wishes to revert back to the initial network, one can do so by using the "Relayout" option placed beside the "Display Labels" option. The gene annotation table shown below the network can also be downloaded in EXCEL format by clicking on the download image.

The user can also analyse the gene annotation list on the basis of target gene length by a click on the header to allow it to sort in an accending or desending order. Further the gene annotation details are linked to its reference webpages like Gene Ontology, Uniprot, KEGG, Gene ID, EnsemblGenomes.

4. Predict Targets

For Predict Target page, user need to choose an organism within the list of nine organisms (*Oryza sativa, Arabidopsis thaliana, Triticum aestivum, Zea mays, Physcomitrella patens, Hordeum vulgare, Sorghum bicolor, Populus trichocarpa* and *Medicago truncatula*) from the first dropdown menu. After organism selection, user must select a prediction method within psRobot_v1.2 or TargetFinder_v1.6 from the second dropdown menu. Further user need to provide a name to the sequence in the first input textbox and then paste the query sequence in the second input textbox.

Plant mIRNA Network Analysis	of intere respect NA is in TargetF The mif	Predict Target Help miRNA-target by providing an organism st along with a query name, and their ye miRNA sequence as an input. PmiR- tegrated with psRobotv1.2 and inder _1.6 to predict the miRNA targets RNA-target result will be displayed the predicted target ID and name along score.	Seed Squerce Seed Squerce Se	© Search	
	Home	Browse Networking Pred	dict Targets Hybridization Energy Abiotic Stress	User Guide	
		Select Organism: Oyza sat Select Prediction Method Give an Id to your sequer Paste miRNA sequence:	TargetFinder_1.6		
		Hello visitor, you hav	e seen this page 166 times.		

On submit, a new result webpage is shown on which a table having the list of predicted targets along with the prediction score are given. The predicted targets list can be analysed by clicking on the header of the table to sort accordingly. The output can also be downloaded by the "Output File" link. Both psRobot and TargetFinder are designed to find potential small RNA targets on a large scale.

	Predicted targets for mature miRNA sequences using TargetFinder_1.6 Organism selected: Oryza sativa									
	Output File: <u>Here</u>									
# Click the headers to sort the table.										
Query Sequence	Prediction Score	Predicted target ids	Position on Transcript 🔻	Strand						
Pred-1 UGACAGAAGAAGAGUGAGCAC	4	OS06T0355300-01	1024-1044	1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	3	OS09T0507100-00	1034-1053	1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	3	OS08T0531600-01	1054-1073	1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	2	NCRNA_48036	107-126	1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	2	NCRNA_12235	11-30	-1						
Pred-1 UGACAGAAGAAGAAGAGUGAGCAC	2	NCRNA_32390	11-30	-1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	2	NCRNA_12239	11-30	-1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	2	NCRNA_32385	11-30	-1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	2	NCRNA_12238	11-30	-1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	2	NCRNA_32403	12-31	-1						
Pred-1 UGACAGAAGAAGAGUGAGCAC	3.5	NCRNA_11831	134-153	1						

5. Hybridization Energy

The Hybridization Energy page looks for the energetically favorable interaction sites between a small RNA in a large RNA by using RNAhybrid. Hybridization energy page is mainly divided in two sections. The first section is used to search for the validated miRNA-target hybridization energy, which is pre-calculated and the second section is used to calculate the hybridization energy of the users query sequences.

In the first section, user needs to click on the toggle and choose an organism from the first dropdown menu. After that user must click on the next toggle to select the miRNA ID from the second dropdown menu and submit it.

Plant miRNA Network Analysis	Energy minimization elp nding the minimum free energy hybridization of org and a short RNA. The hybridization is org and a short RNA. The hybridization is organed is hybridized to the best fitting part of a long one.	EntermiRNA LD here	Q Search	
Hom	e Browse Networking Predict Targets	Abiotic Stress	User Guide	
	Choose Any One Search Option: Citic on the image to toggle Validated miRNA-Target Hybridi Select Organism Oryza sativa Select miRNA ID Submit Submit	zation Energy choose choose osa-mik1220-5p osa-mik1226 osa-mik1230 osa-mik1230 choose		
	Hello visitor, you have seen this pag	osa-miR14402 osa-miR1442 osa-miR1846 osa-miR1847,1 osa-miR1848,1 osa-miR1850,2 osa-miR1850,2 osa-miR1850,2 osa-miR1850,2 osa-miR1850,2 osa-miR12003 osa-miR2105 osa-miR2105		
	DG Lab			

The result is shown on a new webpage having a list of targets along with the length of target and miRNA sequence, minimum free energy (mfe), p-value, position, alignment and its secondary structure file in three formats i.e JPG, PS and PDF. User can view the JPG image on the same webpage itself by moving the cursor on the JPG link. A small window showing the secondary structure of the respective target along with its mfe in kcal/mol is shown as a image. The list of targets can be analysed by clicking the headers to sort the respective columns like mfe and p-value in either increasing or decreasing order. The result table can also be downloaded by clicking on the download image link.

			<u>P1</u>	miR-NA: Plant miRNA RNAhybrid Minimum Free						
Organism Selected: <i>Oryza sativa</i> miRNA ID: <u>95a-miR1425-5p</u>										
of only validated targets is given below.										
aders to sort the table	Target Length	miRNA	miRNA Length	Minimium Free Energy (mfe)	p-value	Position	Alignment	View Structure Files		
OS10T0499500-01	2418	osa-miR1425-5p	21	-38.0 kcal/mol	1.000000	1374	position 1374 target 5' A A 3' GGCAGCAAGGAUUGAA CCUA UCGUCGUUCCUAACUU GGAU miRNA 3' A 5'	JPG File_PS File_PDF File		
OS10T0495200-01	2845	osa-miR1425-5p	21	-36.3 kcal/mol	1.000000	1297	position 1297 target 5' A U G 3' GGCAGCA GGAUUGAAUCC UCGUCGU CCUAACUUAGG miRNA 3' U AU 5'	JPG File_PS File_PDF File		
OS10T0495200-02	2658	osa-miR1425-5p	21	-36.3 kcal/mol	1.000000	1294	position 1294 target 5' A U G 3' GGCAGCA GGAUUGAAUCC UCGUCGU CCUAACUUAGG miRNA 3' U AU 5'	JPG File_PS File_PDF File		
OS08T0110200-01	2663	osa-miR1425-5p	21	-33.8 kcal/mol	1.000000	1302	position 1302 target 5' A CAC A 3' GGCAGCAAGGAUUG CCUA UCGUCGUUCCUAAC GGAU miRNA 3' UUA 5'	JPG File_PS File_PDF File		
OS01T0690800-01	2689	osa-miR1425-5p	21	-29.3 kcal/mol	0.000000	1039	position 1039 target 5' A C U 3' CA CAAGGAUUGAGUCCU GUGUCCUAACUUAGGA miRNA 3' UC C U 5'	JPG File PS File PDF File		
OS10T0497300-01	4744	osa-miR1425-5p	21	-40.3 kcal/mol	1.000000	1306	position 1306 target 5' A G 3' GGCAGCAAGGAUUGAAUCC UCGUCGUUCCUAACUUAGG miRNA 3'	JPG File PS File PDF File		

In the second section, user can choose either of the two options between "Paste the fasta sequences" or "Upload the fasta files". Depending upon the choice of user, input miRNA and target sequences/files are provided. User can also provide various parameters for each hybridization energy calculation. In case user doesnot know about the parameters, one should simply provide the default parameters already written in the input textbox and hit submit.

Plant miRNA Network Analysis	Etter miRNA ID here. @ Search	
	Home Browse Networking Predict Targets (hybridization Energy) Ablotic Stress User Guide	
	Select Organism: Onyza sativa Paste the FASTA Sequences Session ID*: Eol2E405 Hits per target: 1 Maximum target length: 1 Maximum query length: 25 Energy threshold: 0 Target Fasta File*: TTATGATTGGAATGGTTTATTGGAAACGACTTTGTTATTAGGATCCTTTTATTAGGATC miRNA Fasta File*: UGUGUUCUCAGGUCACCCCUU	
	confirm	
	Hello visitor, you have seen this page 173 times.	

The result of hybridization energy calculation is shown on a new webpage mostly in the similar way as the result of the first section. The result can also be downloaded by clicking on the download image.

	PmiR-NA: Plant miRNA Network Analysis RNAhybrid Minimum Energy Calculation										
Organism Selected: Arabidopsis thaliana miRNA ID: <u>ath-miR156a-5p</u> Input Files: <u>Target Sequence</u>											
	Energy Minimization Table										
# Information of only validated ta # Click on the headers to sort the t	able.	low. Target Length	miRNA	miRNA Length	Minimium Free Energy (mfe)	n-value	Alignment				
	AT1G12520.1	1159	ath-miR156a-5p			0.632121	position 216 target 5' A UCCGAUGGCGACU AC A U 3' GCUC GCUCU UUCUG UCG CGAG UGAGAG AAGAC AGU miRNA 3' CA 5'				
	AT1G12520.3	1244	ath-miR156a-5p	20	-23.6 kcal/mol	0.632121	position 204				
	AT1G12520.2	1228	ath-miR156a-5p	20	-23.6 kcal/mol	0.632121	position 204 target 5' A UCCGAUGGCGACU AC A U 3' GCUC GCUCU UUCUG UCG CCAG UGAGAG AAGAC AGU mIRNA 3' CA 5'				
	AT1G08830.2	806	ath-miR156a-5p	20	-18.1 kcal/mol	0.632121	position 614 target 5' U GUA G 3' GUGU UCUUCUG CACG AGAAGAC miRNA 3' AGUGAG AGU 5'				
	AT1G08830.1	872	ath-miR156a-5p	20	-18.1 kcal/mol	0.632121	position 680 target 5' U GUA G 3' GUGU UCUUCUG CACG AGAAGAC miRNA 3' AGUGAG AGU 5'				

6. Abiotic Stress

The Abiotic Stress page provides the list of miRNA regulation in different plant abiotic stress conditions. This page is also divided in two separate sections i.e "Search by organism" and "Search by stress condition".

In the first section, user need to click the first toggle and choose the organism from the first dropdown menu. After organism selection, user need to select one choice between "Select miRNA ID" or "Select stress condition". Depending upon the user choice, one need to click the next toggle to select either miRNA ID or stress condition and hit submit.

Plant miRNA Network Analysis	Contract the stress condition of intrest.	
	Nome Drowse Networking Predict Targets Hybridization Energy Autor: Stless User Guide	

After submit, user can view the results on new webpage showing the list of abiotic stress related details along with the miRNA expression pattern and the references which is hyperlinked.

PmiR-NA: Plant miRNA Network Analysis Abiotic Stress Related Information of Plant miRNA										
 Abiotic Stress Details Table										
Organism	Organism Abiotic Stress miRNA ID Pattern Reference									
Oryza sativa	Arsenite treatment	osa-miR1440b	up-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR156j	down-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR162a	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR166h	down-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR166l	down-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR166n	down-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR168a	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR2106	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR319b	down-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR390	down-regulated	PMID: 22712679						
Oryza sativa	Arsenite treatment	osa-miR390	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR393	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR394	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR397b	up-regulated	PMID: 22712679						
Oryza sativa	Arsenite treatment	osa-miR408	up-regulated	PMID: 22712679						
Oryza sativa	Arsenite treatment	osa-miR528	up-regulated	PMID: 22712679						
Oryza sativa	Arsenite treatment	osa-miR535	up-regulated	PMID: 22537016						
Oryza sativa	Arsenite treatment	osa-miR6246	up-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR6247	down-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR6249	down-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR6250	up-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR6252	up-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR6253	up-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR6255	up-regulated	PMID: 22585409						
Oryza sativa	Arsenite treatment	osa-miR820c	down-regulated	PMID: 22537016						

In the second section, user need to click the second toggle i.e "Search by stress condition" and choose the aboitic stress condition from the dropdown menu and hit submit botton.

PCAUR-NA Plant miRNA Network Analysis	Abiotic Stress Help Abiotic Stress related data can be searched by other an organisms miRVA ID or stress type or by selecting the stress condition of intrest.		MiRAAID bere Search	
	Choose Any One Search Option Click on the image to toggle Search by Organism Search by Stress Condition Select Stress Condition Submit	n		
		Auxin Cadmium (Cd) Carbon (C) deficiency Cold Copper (Cu) deficiency Copper (Cu) excess Cu2+deprive Drought Ethylene Ferrum (Fe) deficiency Gibberellic acid (GA) Heat Heat Heat High Alali High light		

The result is shown on a new webpage containing the list of miRNA showing the selected stress condition which was given by the user. Here also the list is provided with the miRNA expression pattern and hyperlinked references.

PmiR-NA: Plant miRNA Network Analysis Abiotic Stress Related Information of Plant miRNA										
	Abiotic Stress Details Table									
Organism	Abiotic Stress	miRNA ID	miRNA Expression Pattern	Reference						
Arabidopsis thalian	Abscisic acid (ABA)	ath-miR159a	up-regulated	PMID: 23814278						
Arabidopsis thalian	Abscisic acid (ABA)	ath-miR169a	down-regulated	PMID: 23814278						
Arabidopsis thalian	Abscisic acid (ABA)	ath-miR159	up-regulated	PMID: 17217461						
Arabidopsis thalian	Abscisic acid (ABA)	ath-miR319c	down-regulated	PMID: 15258262						
Arabidopsis thalian	Abscisic acid (ABA)	ath-miR393	up-regulated	PMID: 15258262						
Arabidopsis thalian	A Abscisic acid (ABA)	ath-miR417	down-regulated	PMID: 17845858						
Oryza sativa	Abscisic acid (ABA)	osa-miR167a	unindicated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167b	unindicated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167c	unindicated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167d	unindicated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167e	unindicated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167f	unindicated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167g	up-regulated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167h	up-regulated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167i	up-regulated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167j	up-regulated	PMID: 23994683						
Oryza sativa	Abscisic acid (ABA)	osa-miR167	up-regulated	PMID: 23814278						
Oryza sativa	Abscisic acid (ABA)	osa-miR167f	down-regulated	PMID: 19167382						
Oryza sativa	Abscisic acid (ABA)	osa-miR169l	down-regulated	PMID: 19167382						
Oryza sativa	Abscisic acid (ABA)	osa-miR2004	down-regulated	PMID: 19796675						
Oryza sativa	Abscisic acid (ABA)	osa-miR2006	up-regulated	PMID: 19796675						
Oryza sativa	Abscisic acid (ABA)	osa-miR319a	down-regulated	PMID: 19167382						