
Practical Workshop: de novo genome assembly

Author: Yung Shwen Ho
Contact: ho.shwen@kaust.edu.sa

Introduction

The aim of this workshop is to introduce the basic workflow for de novo genome
assembly using Velvet and highlight some key steps within the process which you
can manipulate to improve the final result.

Setting up the environment

You will be working in the virtual environment along with some data file that will be
given to you during the workshop. Those data files will have to be copied into your
virtual box share folder before you can continue beyond this point.

Compiling Velvet

The virtual machine has velvet pre-installed for this workshop. However, it is
possible that you might have to install velvet by yourself in the future. Thus we will
go through the process of unzipping and compiling the software in the first exercise.

Note: all –rt will sort the files in the directory and list the contents in an ascending
order of their modified date. Thus, the most recently added files at listed at the
bottom.

Choosing the right hash length is crucial to obtain optimal assemblies. Depending

on the dataset, you might wish to use long hash lengths. By default, velvet is

compiled with a maximum of k-mer 31, but you can increase this limit by

adjusting the MAXKMERLENGTH parameter. The example below will allow

velvet to run with a maximum k-mer length of 75bp. However, by storing longer

words, Velvet will be requiring more memory, so adjust this variable according to

your needs and memory resources.

cd /home/b308/Desktop/Practicals/01_compiling_velvet
tar –xzvf velvet_1.2.10.tgz

cd ./velvet

make

ll -rt

Which new files have been created?

make MAXKMERLENGTH=75

Sometimes you might want to use libraries having different insert sizes or having

different samples altogether. By default, there are only two short read categories,

but this variable can be extended to your needs. In that case, you will need to

compile it with the CATEGORIES flag. The example below will allow for 10

different libraries.

Read lengths are stored on signed 16bit integers, meaning that if you assemble

contigs longer than 32kb long, then more memory is required to store coordinates.

In that case, you will need to compile it with the LONGSEQUENCES flag.

How about combining them all?

There are 2 main programs that you will need to run:

1) velveth – reads processing

2) velvetg – de Bruijn graph assembly

Let us look at what they are by executing the command.

The executable files are currently stored in the “01_compiling_velvet” folder.
To make it accessible from the rest of your folders, you can either add that to your
PATH variable or create a symbolic link to those 2 executable programs where you
will most likely use them. We will not be demonstrating either of them as I have
preinstalled a version of velvet for you in the virtual environment.

Creating your first assembly

Now that you know how to configure and install velvet, let us move ahead and
generate your first de novo genome assembly. You will have to access the data files
stored in the “02_default_assembly” folder by moving to that location. You will be
doing all your assembly there. Velveth is the first command you will need to run to

make CATEGORIES=10

make LONGSEQUENCES=1

make CATEGORIES=10 LONGSEQUENCES=1 MAXKMERLENGTH=75

./velveth

./velvetg

pre-process the reads for assembly. Can you guess what does each of the parameter
means?

Let us see what has been created by velveth. Go into the directory single_51 that has
been created.

Now, let us generate the assembly by using the velvetg command. The minimum
parameter you have to provide in velvetg is the folder which you created using
velveth.

Let us see what is the result of the final assembly.

cd /home/b308/Desktop/Practicals/02_default_assembly

ls –l

velveth single_51 51 -short -fastq.gz single.fastq.gz

cd ./single_51

ls –lh

cat Log

head Sequences

What is recorded in the log file?

What information can you see in the Sequence file?

How big is the Sequence file?

cd ..

time velvetg single_51

cat ./single_51/Log

What if we were to try different K-mer size?

 Assembly with K-mer 51 Assembly with K-mer 71
Total assembly Size
Largest coting size
N50 size
Number of contigs

If paired-end reads are available, it will help better with the assembling process. Let
us see how the assembly will look if we were to use a normal Illumina Paired end
library from the same library as single.fastq.gz.

 Single-end reads only Paired-end reads
Total assembly Size
Largest contig size
N50 size
Number of contigs

What is the maximum contig size for our assembly?

What is the total assembly size?

What is the n50?

How many contigs are there in the assembly?

velveth single_71 71 -short -fastq.gz single.fastq.gz

velvetg single_71

cat ./single_71/Log

What are the differences in the assembly stats?

velveth paired_71 71 –fastq.gz –separate -shortPaired fwd.fastq.gz

rev.fastq.gz

velvetg paired_71

cat ./paired_71/Log

What are the differences in the assembly stats?

Let us have an even closer look at the assembly stats other than N50, total size and
largest contig size.

The astat command is actually a shortcut to another command in the PAGIT toolkit
(which we will discuss later). It gives us more stats than the default Velvet
assembler log. It might be interesting for you to find out where this shortcut points.
But let us focus on the output from astat.

Most likely if you ran velvet by default, it would have generated many small
fragments (about selected K-mer size x 2) and are not usually useful. Let us see if we
can filter those small fragments out of the assembly and calculate the statistics for
contigs greater than 1000bp.

 Paired-end (default) Paired-end (default) min100bp
Total assembly Size
Largest contig size
N50 size
Number of contigs

It is quite likely that the short contigs accounted for most of the fragments within
the assembly. They are probably noise within the assembly and removing them at
an earlier stage will help you with your workflow. You can automatically filter out
short contigs by putting this option “-min_contig_lgth 1000” when you run
velvetg. There are quite a few options which you can tweak within velvetg and you

astat ./paired_71/contig.fa

What does N80 represent?

What does the n = x number mean for each line?

What is the N80 of ./paired_71/contig.fa ?

What is the N100 of ./paired_71/contig.fa ?

astat –l 1000 ./paired_71/contig.fa

What are the differences in the assembly stats?

can learn more about them either in the Velvet manual or by running velvetg
without any other parameter. However we will look at how we can improve the
assembly by setting the -cov_cutoff and –exp_cov parameters.

There are other ways to assess the quality of the assembly instead of N50s. As the
reads were used in the assembly, they should all be mapped onto the final assembly
and “properly paired”. A proper pairing read is a read that is mapped in the correct
(facing towards each other) orientation with its other mated read and is within the
expected insert size distance. In order to find out about that, we can use an aligner
to map the reads back onto the genome.

mv ./paired_71/contig.fa ./paired_71/contig.fa.0

velvetg paired_71 –cov_cutoff auto –exp_cov auto –min_contig_lgth 1000

astat ./paired_71.contig.fa

What is the velvet estimated expected coverage ?

What is the velvet estimated coverage cutoff value?

What are the improvements when we use set the –cov_cutoff and-exp_cov parameters?

cd ./paired_71/

bwa index contigs.fa

bwa aln contigs.fa ../fwd.fastq.gz > fwd.sai

bwa aln contigs.fa ../rev.fastq.gz > rev.sai

bwa sampe contigs.fa fwd.sai rev.sai ../fwd.fastq.gz ../rev.fastq.gz >

 contigs.sam

samtools view –bS –T contigs.fa contigs.sam > contigs.bam

samtools sort contigs.bam contigs.sorted

samtools index contigs.sorted.bam

samtools flagstat contigs.sorted.bam

How many reads are mapped onto the genome?

How many mapped reads are properly paired? How many percent of the total reads
does that represent?

You might want to try repeating this step for the other assemblies you have created
so far. It is always a good idea to calculate these stats as part of your assembly
workflow.

One thing that we haven’t surveyed till now is how velvet handles the quality scores
within the FastQ file. Unfortunately, velvet does not take into account quality
information at all. That means that it is left to you to preprocess your data before
assembling them. In order to understand the quality profile of your initial data, we
will first do a health check.

the firefox command will launch the web-browser and open up the fastqc report for
fwd.fastq.gz.

From the quality plot above, you can see that the quality drops below Q20 at the end
of the read after base 90. Those poor quality bases at the end of each read might
create some error within our assembly. There are various ways to remove those
erroneous bases but we will concentrate on using the tool Trimmomatic to
dynamically remove those low quality bases.

cd ..

fastqc fwd.fastq.gz

fastqc rev.fastq.gz

firefox ./fwd_fastqc/fastqc_report.html

You can find out more about Trimmomatic and see what each of the options
(LEADING, TRAILING, SLIDINGWINDOW and MINLEN) means by going to this link:

http://www.usadellab.org/cms/index.php?page=trimmomatic

Trimmomatic created 4 files p.1.fastq, p.2.fastq, up.1.fastq and up.2.fastq. Files
prefixed with “p.” contained trimmed reads where their mates are still present after
the filtering process. This is what you want to use. Files prefixed with “up.”
represent reads that had their other mate removed and they are not singleton. We
will not be using it for this workshop and we can remove them to save some space.
However, you might want to keep them somewhere for your own assembly. We are
also going to zip up the “p” files to save some space.

java -classpath ~/softwares/Trimmomatic-0.22/trimmomatic-0.22.jar

 org.usadellab.trimmomatic.TrimmomaticPE -phred33

fwd.fastq.gz rev.fastq.gz p.1.fastq up.1.fastq

p.2.fastq up.2.fastq LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:50

rm up.*.fastq

gzip p.1.fastq

gzip p.2.fastq

fastqc p.1.fastq.gz

firefox ./p.1_fastqc/fastqc_report.html

How many paired reads are left after trimming?

How many singleton reads are left after trimming?

Now that we have the trimmed data files, Let us try running the assembly with the
new dataset.

 Paired-end (no trim) Paired-end (trimmed)
Total assembly Size
Largest contig size
N50 size
Number of contigs
Percentage of PP mapped reads

velveth trim_paired_71 71 -fastq.gz -separate -shortPaired p.1.fastq.gz

 p.2.fastq.gz

velvetg trim_paired_71 –cov_cutoff auto –exp_cov auto –min_contig_lgth

 1000

astat ./trim_paired_71/contig.fa

cd ./trim_paired_71

bwa index contigs.fa

bwa aln contigs.fa ../p.1.fastq.gz > fwd.sai

bwa aln contigs.fa ../p.2.fastq.gz > rev.sai

bwa sampe contigs.fa fwd.sai rev.sai ../p.1.fastq.gz ../p.2.fastq.gz >

 contigs.sam

samtools view –bS –T contigs.fa contigs.sam > contigs.bam

samtools sort contigs.bam contigs.sorted

samtools index contigs.sorted.bam

samtools flagstat contigs.sorted.bam

What are the differences in the assembly stats?

Practical Workshop: Genome assembly improvement

Author: Yung Shwen Ho
Contact: ho.shwen@kaust.edu.sa

Introduction

The aim of this section is to show you the familiarized with some basic workflow for
genome assembly improvement and validation.

Where we were previously

You were introduced to velvet and some basic steps that you can take to improve
the outcome of the assembly. However that is often not the final genome that you
will be publishing. This is because there are often errors within the genome
assembly that needs to be fixed. There will also be regions within the genome that
can still be improved.

Scaffolding of the genome assembly

If you have access to either short pair-end or long mate-pair libraries, you can use
the pairing information to stitch contigs into scaffold by estimating their distances.
This can be incredibly useful to improve your assembly. Let us try to scaffold our
previously assembly. First copy your final contig.fa file from the previous lesson to
the new directory.

We will be using the program SSPACE to scaffold our assembly and you can learn
more about it from this link: http://www.baseclear.com/landingpages/basetools-a-
wide-range-of-bioinformatics-solutions/sspacev12/

Before you can run SSPACE, you will need to inform SSPACE about some
information regarding your libraries. The filename, their insert size information,
expected insert size error you expect to see within your library and their
orientation.

We will have to unzip the data files as SSPACE will not process zip files.

Create a file call sspace.config.txt by calling the text editor gedit

cd /home/b308/Desktop/Practicals/03_Scaffold_exercise

cp ../02_default_assembly/trim_paired_71/contig.fa step02.fa

mv ../02_default_assembly/p.1.fastq.gz .

mv ../02_default_assembly/p.2.fastq.gz .

gunzip p.1.fastq.gz

gunzip p.2.fastq.gz

gedit sspace.config.txt

and put in the following line (be mindful of the spaces):

lib p.1.fastq p.2.fastq 350 0.25 FR

Next, we can run the SSPACE program and attempt to scaffold the previous
assembly. The final scaffold assembly is stored in the file
standard_output.final.scaffolds.fasta

Closing the assembly gaps

In order to close the gaps within your scaffolds, you can use GapFiller or Image tool
to close them. Both work in a similar manner where reads are mapped to the edges
to the gaps or edges (for the contig extension option) of the contig. Reads that are
successfully mapped are then used to fill in the missing bases. This process is
repeated multiple times to close bigger gaps. In this exercise, we will use GapFiller
to close the gaps that were created from the scaffolding assembly that you have
generated earlier.

SSPACE_Basic_v2.0.pl -l sspace.cnfig.txt -s step02.fa

cat standard_output.summaryfile.txt

What is the maximum scaffold size for our assembly?

What is the total assembly size?

What is the Scaffold n50?

How many Scaffolds are there in the assembly?

How many N-bases are there in the assembly?

How does every stat compares with the previous contigs?

cd /home/b308/Desktop/Practicals/04_Gap_fill_exercise

cp ../03_Scaffold_exercise/standard_output.final.scaffolds.fasta step03.fa

cp ../03_Scaffold_exercise/p.1.fastq .

cp ../03_Scaffold_exercise/p.2.fastq .

Create a file call gapfill.config.txt by calling the text editor gedit

and put in the following line (be mindful of the spaces):

lib bowtie p.1.fastq p.2.fastq 350 0.25 FR

Next, we can run the gapfiller program to fill in the assembly gaps with the paired –
end data. The final scaffold assembly is saved in:
standard_output.final.scaffolds.fasta .

Visualizing the genome assembly and identifying errors.

Now that you have filled in the gaps, we should visualize the genome in the context
of the published reference genome to have an overview picture of your assembly. To
do that, we first have to order and orientate our scaffold according to the reference
genome. This way, we will be able to compare them effectively. To do that, we will
be using the tool abacas from PAGIT.

Abacas will create a pseudo molecule based on the reference you have provided. The
file that you can use is: step04.fa_FN649414.fasta.fasta . In addition, Abacas will
provide you with a crunch comparison file: step04.fa_FN649414.fasta.crunch where

gedit gapfill.config.txt

GapFiller.pl -l gapfill.config.txt -s step_03.fa

cat standard_output/standard_output.summaryfile.final.txt

How many cycle did GapFiller run?

How many gaps did GapFiller close within the first cycle?

How many single N’s remain after the execution?

Are there any changes to the other assembly stats?

cd /home/b308/Desktop/Practicals/05_Visualize_1_exercise

cp ../04_Gap_fill_exercise/standard_output/

 standard_output.gapfilled.final.fa step04.fa

abacas.pl -r FN649414.fasta -q step04.fa -p nucmer -a –c

we will be using later to compare it to the reference. It is a good idea now to map the
reads back to both the reference genome and pseudo molecule.

Now that you have two bam files (pseudo.sorted.bam, reference.sorted.bam),
we can now open them in artemis to visualize the genome. You can either click the
shortcut button to Artemis on the side task bar or enter this command line to launch
artemis.

After artemis has started, you can open the fasta file you have prepared earlier and
load the pseudo.sorted.bam file onto the assembly. You should see something
similar to this.

cd /home/b308/Desktop/Practicals/05_Visualize_1_exercise

cp ../04_Gap_fill_exercise/standard_output/

 standard_output.gapfilled.final.fa step04.fa

abacas.pl -r FN649414.fasta -q step04.fa -p nucmer -a –c

cp ../03_Scaffold_exercise/p.1.fastq .

cp ../03_Scaffold_exercise/p.2.fastq .

bwa index step04.fa_FN649414.fasta.fasta

bwa aln step04.fa_FN649414.fasta.fasta p.1.fastq.gz > fwd.sai

bwa aln step04.fa_FN649414.fasta.fasta p.2.fastq.gz > rev.sai

bwa sampe step04.fa_FN649414.fasta.fasta fwd.sai rev.sai p.1.fastq

 p.2.fastq.gz > pseudo.sam

samtools view –bS –T step04.fa_FN649414.fasta.fasta pseudo.sam >

 pseudo.bam

samtools sort pseudo.bam pseudo.sorted

samtools index pseudo.sorted.bam

samtools flagstat pseudo.sorted.bam > pseudo.sorted.bam.stats

bwa index FN649414.fasta

bwa aln FN649414.fasta p.1.fastq.gz > fwd.sai

bwa aln FN649414.fasta p.2.fastq.gz > rev.sai

bwa sampe FN649414.fasta fwd.sai rev.sai p.1.fastq p.2.fastq.gz >

 reference.sam

samtools view –bS –T FN649414.fasta reference.sam > reference.bam

samtools sort reference.bam reference.sorted

samtools index reference.sorted.bam

samtools flagstat reference.sorted.bam > reference.sorted.bam.stats

art

Turn on the feature “Mark ambiguity” , strand stack visualization with SNP marking.
Scroll through the pseudo molecule and see if you can identify any assembly error.
Example of SNPs within the pseudo molecule can be seen in the images below:

If you turn on insert size distribution, you might be able to find regions in the
genome that were misassembled.

Let us see how the genome looks when compared to the reference genome. You can
activate act from the shortcut on the left taskbar or enter this command line to
launch act.

in the next window, select the following files for comparison:

Sequence file 1: FN649414.fasta
Comparison file 1: step04.fa_FN649414.fasta.crunch
Sequence file 2: step04.fa_FN649414.fasta.fasta

You should see something similar to the image below. ACT allows you to have an
overview of how the assembly compares to your reference genome.

Which region in the genome has a single SNP?

Are there any particular region of the genome where SNPs clusters

act

Correcting assembly error using reapr.
Now that we have identified some errors, Let us see if we can correct them. The
pseudo molecule that you have just created is mainly used for visualizing the
genome. It is better to use the last assembly file that you have created from the
GapFiller stage. This process will take a very long time and it might be worth
leaving it overnight if you were working on your own data.

It is always good visualize the final corrected assembly by mapping the reads back
onto the result fasta file and seeing it in Artemis to confirm if the reapr has not left
out anything. You can repeat the previous step above to redo the visualization
process or write this up as a script for ease.

cd /home/b308/Desktop/Practicals/06_Correct_errors

cp ../04_Gap_fill_exercise/standard_output/

 standard_output.gapfilled.final.fa step04.fa

cp ../03_Scaffold_exercise/p.1.fastq .

cp ../03_Scaffold_exercise/p.2.fastq .

reapr facheck step04.fa step04_checked

reapr smaltmap step04_checked.fa p.1.fastq p.2.fastq mapping.bam

reapr pipeline step04_checked.fa mapping.bam outdir

How many bases are corrected by reapr?

How many scaffold did reapr break?

